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Landau-like theory of glassy dynamics
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An exact solution of a Landau model of an order-disorder transition watiivated critical dynamics is
presented. The model describes a funnel-shaped topology of the order parameter space in which the number of
energy lowering trajectories rapidly diminishes as the ordered ground state is approached. This leads to an
asymmetry in the effective transition rates which results in a nonexponential relaxation of the order-parameter
fluctuations and a Vogel-Fulcher-Tammann divergence of the relaxation times, typical of a glass transition. We
argue that the Landau model provides a general framework for studying glassy dynamics in a variety of
systems.
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Introduction Glassy dynamics occur in a large variety of values on the integers. We describe dynamicg a6 a ran-
systems, such as supercooled liquids, foams, and granuldom walk on a one-dimensional lattice.
matter. They are characterized by an extremely rapid in- The Landau free energy in the disordered phage
crease of relaxation times and by a nonexponential decay of u*) is assumed to be quadratic,
time-dependent correlation functiofis]. The rapid increase .
in time scales is typically fit by an exponential, Vogel- BF(p) = BFO+ r - Mpz; (1)
Fulcher-TammaniVFT) dependence on a control parameter 2

such as temperature or density. In this Rapid Communica-

on, we propose & Landal el oforder-prameter cynant 1 1 IMersioiess convel pevameter e s rtr
ics in the vicinity of a critical point that exhibits these fea- ' 9y by

tures quadratic functions of the order parametesE(p)=BE°

The canonical theoretical framework for dynamics near g #p°12, and S(p)=S-p* p*/2 [4]. The free energysF
critical point is the time-dependent Ginzburg-Landau equa—:'BE_S leads to a mean-f|eld phase transition jas-u
tion [2]. It successfully describes the phenomenon of critical” O- Below we shall be interested in the order parameter
slowing down, whereby the relaxation time for order- dynar_nlcs as the phase transition point is approached from
parameter fluctuations scales as a power of the correlatioft€ disordered phase. o _
length, which in turn diverges as the critical point is ap- " the Landau approach to critical dynamié¥p, 1), the
proached. A natural question to ask is whether this frameProPability for the order parameter to take the vaiust time
work can be adapted to describe glassy dynamics. Here wle S the solution to the master equation
show analytically that a master equation, based on a Landau —_ _
free energ);/, whgre the energy ar?d entropy play asymmetric AP == (Wypa + Wy pra) Plp) + Wy ,Plp = 1)
roles in determining the transition rates, naturally leads to a +W,1,P(p+1), 2
;/(f;eg'\:]zrgregcgigggl 30?;?6“1 distribution of relaxation UMe here AtP__E P(t+At)—P(t)_ is the discrete time derivative.
The microscopic basis for the asymmetry in the transitionThe transition rategsee Fig. 1, W,_.,, depend on the free
rates can be found in the topology of the space of trajecto-
ries. Namely, we consider the situation where the number of
energy lowering trajectories diminishes as the ordered
ground state is approached. A similar funnel-like topology of
the trajectory space for a simple kinetic model of protein
folding has been identified recently as a possible explanation
of fast folding[3]. Here we show that such a topology of the
trajectory space, when a system is driven to a critical point,
can result in glassy critical dynamics. Furthermore, we hy-
pothesize that diverse systems such as foams, granular matter
and supercooled liquids owe their glassy features to such a FIG. 1. The Landau free energgF(p), is a parabola whose
mechanism, and propose computational tests of this idea. width increases as the transition is approachee:0). The order
Model We start with a mean-field model of a continuous parameterp performs a random walk with rates dictated by the
phase transition for a scalar order paramegiethat takes energy and the entropy, which are functionspof
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energy, the canonical choice being), ., =exg{-[BF(p") Scaling solution at the critical pointFor =0, the

-BF(p)]/2}. These rates satisfy detailed balance and yield aplace transfomii(p,s): J5P(p,t)edt is
the equilibrium Gibbs distributionP.((p) = exgd-BF(p)], as

the steady state solution to E@). Relaxation processes de- 2s ol
scribed by these rates implicitly assume that neither energy _ 1 Ky DM*ze“
nor entropy barriers impede the fluctuations of the order pa- P(p,s) = —=e~lel2 (6)
rameter around its equilibrium valuge,=0. v8sD ﬁ)
The canonical scenario described above can be altered 0 Du'"?

dramatically if the microscopic dynamics are constrained in . - o
some way. An example is provided by a system of hard The long-time limit(t— <) corresponds to the_—>0 I|_m|_t
spheres at densities approaching random close packing. Al Laplace space and Eq6) Sug-ge,ﬁtﬁzthe scaling limg
these large densities only correlated motions of many spheres 0 and |p| — Wh'!}‘a Vlget?_plng vse” 7 fixed. Using the
are available to the system in order to relax a density perturSc@ling variablez=e?"*/\t, the scaling form of the solu-
bation [5]. We consider the case where such constraints ifion t© EQ.(5) can be written as

the microscopic dynamics can be encoded as an asymmetry N

in the way energy and entropy enter the trans'ition ratgs P(p,t) = K F(z). (7)
W,_,. In particular, we assume that energy lowering transi- 2InDt

tions can proceed only from a small subset of microstates at ) ) 20,7 )

given p. If the system finds itself in one of these microstatesThe scaling functior=(z)=(*/2)e™ " " is determined by
the transition occurs at a fixed rate independent of the valugubstituting the scaling form, Eg7), in Eq. (5) with €=0,
of p. The number of states available for the energy loweringgnd matching the leading order terms for latg&his solu-
transitions is taken to be proportional to the number of mi-tion immediately gives us the mean square fluctuatiop of
crostates in the target staj€, Thus, the rate of energy low- for larget,

ering transitions is proportional to the ratio of the number of

microstates inp’ and p, and is therefore a function of the wpz expl - e’ dp

entropychange only. Taking the requirement of detailed bal- ) 2u"2Dt e

ance also into account leads to (P () =—= o ~ In%(2p “DY). (8)
_ o . , expl ——— |d

p=p e 1BE()-BEM] if E(p") > E(p). ) N o .
The fluctuations grow logarithmically with time, in contrast

These rates imply a funnel-like topology of the trajectoryto the standard/t scaling expected at a normal critical point.
space since the number of paths leading downhill in energy Scaling solution fore# 0. Away from the critical point,
decreases continually as the system approaches its groutite Fokker-Planck equation, E¢), has a normalizable sta-
state. tionary solution. The equation obtained by substituting
Using the quadratic expressions for the energy and er‘p(p,t):e—spzl4D¢(p,t) in Eq. (5) allows a scaling solution for
tropy in the transition rates leads to the master equatmn ,(, t) in the limit t— o, p— o but keeping the combination

p=01[6]) e“"?/t fixed. Repeating the same steps as described above for
AP(p) = — (€74 + e ¥ (P*2)\P(p) + € ¥ PP(p — Ap) the e=0 case we compute
+ e HPrIP(p + Ap); (4) el
— 24D — ————
. . : . expl — ep/4D 2

Ap=1 is the microscopic step size in the order parameter P(p.t) = 2u “Dt )
space. Since the rates are invariant ungef—p, the equa- Pt =" ) erp
tion for p<0 has a similar form. Close to the critical point 2J dp exp| — ep/4D ~ 272Dt
(u*—pu<<1) typical values ofp are much greater than one, 0 K
and we expect significant variations &p) to occur on In the limit t— oo, this solution recovers the equilibrium
scales much larger thadp. A well defined continuunp  distribution. From Eq(9), it is clear that at a given large
limit of the master equation, there are two length scales gnspace: the equilibrium length

P 9 P scale, \{p?eq=V2D/€, and a time-dependent length scale,

i e epe PP + 2De"‘*“"(9—p , (5 pe=(1/u*)In(u"?Dt). For p<p., P(p,t) reduces to the equi-

librium Gaussian distribution while fgr> p. the distribution

is obtained by taking\p— 0, At—0, andu*—u—0, while  of p is superexponentiglsee Fig. 2 At long timesp, be-
keepingD=(Ap)?/2At ande=(u*— u)Ap/ At finite. We note  comes much larger than the equilibriugnand the system
that a direct consequence of the asymmetric transition rategnows” that it is in equilibrium. This defines a crossover
is the exponentially decaying factor multiplying both the time t.~e*" P’ obtained by equating, with (p®e, Be-
drift and the diffusion terms in Eq5). The time-invariant low we also compute the relaxation time from the the mean-
probability distribution obtained from this equation is the square fluctuation of the order parametgr(t)) and show

normalized, equilibrium distributioReq(p) = Jel4me (@4D)’  that it diverges as eXfi/€], which is precisely the VFT law.
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Y. N EST nondisordered systems with frustratip8]. The emergence
10k W et of a glass state in the latter case could then be associated
with a critical point at which relaxation times would acquire
_ ¥a N\ astronomical values long before any discernible spatial cor-
= R / XY relations indicative of an ordered state could be established.
3—10 3 ,'; AN The dynamical Landau model presented here provides an
R /i EA explicit realization of this scenario.
] E The scaling solution to our model demonstrates that a
107,/ : \\- seemingly innocuous change in the transition rates leads to
b Ly an exponential divergence of time scales at a critical point,
A5 505 10 1s while all its static properties are described by mean-field
Y Landau theory. The dynamics of the Landau model are char-

acterized by a multitude of time scales and by nonexponen-
tial relaxations even away from the critical point. Namely,

- _ . the mean-square fluctuation pfcan be written in terms of
—O.(i9, 2.3, 4._6 f_ot—_2, 1Q, 100, re_spectlvely, arg=88. _Note that the density of state€)(E) as <p2(t)>:f dEQ(E)e B The
at t=2 the distribution is essentially superexponential and tfor . . .
-100 it is a Gaussian. power law decay fore=0, Eq. (13), implies thatQ(E) is
proportional tos(E)-const with thes function guaranteeing
An interesting conclusion that can be drawn about the LanEhe equilibrium value. At the critical point, the logarithmic

- o o
dau model is that its critical dynamics cannot be character(—jecay of the fluctuations implieB(E) < In“(E)/E. The glass

ized by a single diverging time scale. transition in our model is, therefore, not characterized by a

We h lier that in th 2(t vanishing gap in yhe energy spectriiof Eq.. (5)] but instead
~In2?t) fsﬁa;e:n Fi?reliro th?s (;Tjanti‘j/owiﬁarseelé\f(p té )i>ts by an accumulation of states ndar 0. This then translates

o S to a distribution of time scales with increasing weight in the
m 2\ - m
equilibrium value(p9)eq=2D/ €. From Eq.(9), we find in the tails of the distribution corresponding to long times.

FIG. 2. The probability distributionP(p,t), for three different
times, with €=0.1, D=1, and u*=1. For these parameterg,

scaling limit, In the Landau model with a quadratic entropy function the
o *p entropy goes to zero qi%axzzsalﬂ* and our analysis is,
p? exp(— €p?l4D - m)% therefore, strictly valid for<p2>eg< pzmax or e=yu* /2%, For

(pA(1) = 0 (10) smaller values ofe the relaxation time-scale divergence is

* 2 ex'r ' cut off by the system size.
exp — ep”/4D ~ 5= |dp Mi ic modelsTh iti iven by E
o 242Dt icroscopic modelsThe transition rates given by E¢B),

which formed the basis of our dynamical equation and led to
Thus one can write the VFT divergence of time scales, are explicitly realized in
the interacting three-color mod@®]. The configurations of
- M' (11)  the three-color model on the honeycomb lattice can be
IA mapped on to loop packings and the loops can be identified
with equal height contours of a discrete height field which
lives on the dual triangular latticgl0]. Coloring configura-
* ) er'r tions can be organized into topologically distinct sectors
Z(A):f dpexp —Ap" = oo |- (12 characterized by the number of nonzero winding number
0 H loops, which correspond to different global tilts in the height

(V)=

whereA=¢€/4D, and the generating functi&(A) is given by

From Eq.(11) we find that for larget and smallA, representation. The introduction of a long-range interaction
between one of the colors leads to a phase transition from a
(P2(1) =~ ( pz>eq_ 4D D,L*Z/e}_ (13) flat to a completely tilted statg9] with the tilt playing the
é t role of the order parameter.

Microscopic dynamics for the three-color model can be
fined in terms of loop updat¢g] with transitions between
different loop configurations satisfying detailed balance.
Simulations were performed to extract the transition rates
between different tilt states and it was shown that they take
the form described by Eq3). The asymmetry in the rates

Thus, at late times, the mean square fluctuation relaxes to it&e
equilibrium value in a power law~1/t) fashion. A standard
way to estimate the relaxation timeis to define it as the
time needed for the differenc@?).,—(p(t)) to decay to a
given value of order one. From E@l3) we immediately

obtain owes its origin to the loop dynamics. greducing(energy-
D 5,2, increasing transition involves deleting an existing nonzero
T® ?e B, (14)  winding number loop. The rate of this transition is deter-
mined only by the change irenergysince all loop configu-
which diverges in the VFT manner as- 0. rations at a giverp can lead to a configuration with' <p.

Activated dynamics at a critical point were previously On the other hand, a transition that increapesnd conse-
shown to occur in systems with quenched disofd¢mand it  quently decreases the energy, involves introducing a new
had been suggested that a similar situation might exist imonzero winding number loop. Since only a small subset of
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loop configurations at a givep can accommodate a new model, the asymmetry of the rates results in an entropy crisis
nonzero winding number loop, this transition rate dependsind, combined with the existence of an equilibrium critical
only on the change of entropy. We believe similar mechapoint, leads to an exponential divergence of relaxation time
tween macrostates involve large scale rearrangements that, 1o coarse-grained dynamical model presented here sug-
due to the presence of constraints, can occur only througle g o new way of analyzing atomistic simulations of glassy
coordination of many microscopically rearranging regions. ) . . ;

rT{natenals. From molecular dynamics simulations one can

In this paper, we identify a concrete physical mechanis .
by which dynamical barriers are established in the free en[neasure the transition rates between macrostates character-

ergy landscape. The dynamics in the order parameter spa#ed by different values of a slow variable that plays the role
in our model is thus reminiscent of diffusion on hierarchicalof an order parameter, e.g., the metabasin energies in super-
lattices[11,17 and trap model§13]. Recently, attempts have cooled liquids[14,15. This approach avoids making specific
been made to identify inherent structures in supercooled ligassumptions about the origin of the transition rates. Dynam-
uids as providing a microscopic basis for trgf4,15. If we  ics in order parameter space can be constructed explicitly
identify inherent structures with the order parametém our  and analyzed for the types of asymmetries and related dy-
model then the predicted distribution of trapping times, namical barriers discussed here within a simple Landau
=1/(W,_,-1+W,_ 1), is log-normal with a width that in- model. Work along these lines is currently in progress.
creases as ¥/ This is consistent with the behavior observed
in supercooled liquid simulatiorid4]. We would like to thank Albion Lawrence and Leticia
Studies of kinetically constrained modgliss] have iden-  Cugliandolo for useful discussions. We acknowledge support
tified dynamical heterogeneitigd7,18 resulting from the by NSF Grant Nos. DMR-020710€B.C.) and DMR-
kinetic constraints and an entropy crisis in trajectory spac®984471(J.K.) and by the Research Corporation through the
which leads to rapidly increasing time scalé8,19. In our  Cottrell Scholar prograniJ.K.).
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