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An exact solution of a Landau model of an order-disorder transition withactivatedcritical dynamics is
presented. The model describes a funnel-shaped topology of the order parameter space in which the number of
energy lowering trajectories rapidly diminishes as the ordered ground state is approached. This leads to an
asymmetry in the effective transition rates which results in a nonexponential relaxation of the order-parameter
fluctuations and a Vogel-Fulcher-Tammann divergence of the relaxation times, typical of a glass transition. We
argue that the Landau model provides a general framework for studying glassy dynamics in a variety of
systems.
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Introduction. Glassy dynamics occur in a large variety of
systems, such as supercooled liquids, foams, and granular
matter. They are characterized by an extremely rapid in-
crease of relaxation times and by a nonexponential decay of
time-dependent correlation functions[1]. The rapid increase
in time scales is typically fit by an exponential, Vogel-
Fulcher-Tammann(VFT) dependence on a control parameter
such as temperature or density. In this Rapid Communica-
tion, we propose a Landau model of order-parameter dynam-
ics in the vicinity of a critical point that exhibits these fea-
tures.

The canonical theoretical framework for dynamics near a
critical point is the time-dependent Ginzburg-Landau equa-
tion [2]. It successfully describes the phenomenon of critical
slowing down, whereby the relaxation time for order-
parameter fluctuations scales as a power of the correlation
length, which in turn diverges as the critical point is ap-
proached. A natural question to ask is whether this frame-
work can be adapted to describe glassy dynamics. Here we
show analytically that a master equation, based on a Landau
free energy, where the energy and entropy play asymmetric
roles in determining the transition rates, naturally leads to a
VFT divergence and a broad distribution of relaxation time
scales near a critical point.

The microscopic basis for the asymmetry in the transition
rates can be found in the topology of the space of trajecto-
ries. Namely, we consider the situation where the number of
energy lowering trajectories diminishes as the ordered
ground state is approached. A similar funnel-like topology of
the trajectory space for a simple kinetic model of protein
folding has been identified recently as a possible explanation
of fast folding[3]. Here we show that such a topology of the
trajectory space, when a system is driven to a critical point,
can result in glassy critical dynamics. Furthermore, we hy-
pothesize that diverse systems such as foams, granular matter
and supercooled liquids owe their glassy features to such a
mechanism, and propose computational tests of this idea.

Model. We start with a mean-field model of a continuous
phase transition for a scalar order parameterr that takes

values on the integers. We describe dynamics ofr as a ran-
dom walk on a one-dimensional lattice.

The Landau free energy in the disordered phasesm
,m* d is assumed to be quadratic,

bFsrd = bF0 +
m* − m

2
r2; s1d

m is the dimensionless control parameter andm* is its criti-
cal value. The energy and the entropy are also assumed to be
quadratic functions of the order parameter:bEsrd=bE0

−mr2/2, and Ssrd=S0−m* r2/2 [4]. The free energybF
=bE−S leads to a mean-field phase transition asm*−m
→0. Below we shall be interested in the order parameter
dynamics as the phase transition point is approached from
the disordered phase.

In the Landau approach to critical dynamics,Psr ,td, the
probability for the order parameter to take the valuer at time
t, is the solution to the master equation

DtPsrd = − sWr→r−1 + Wr→r+1dPsrd + Wr−1,rPsr − 1d

+ Wr+1→rPsr + 1d, s2d

where DtP; Pst+Dtd−Pstd is the discrete time derivative.
The transition rates(see Fig. 1), Wr→r8, depend on the free

FIG. 1. The Landau free energy,bFsrd, is a parabola whose
width increases as the transition is approachedse→0d. The order
parameterr performs a random walk with rates dictated by the
energy and the entropy, which are functions ofr.
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energy, the canonical choice being,Wr→r8=exph−fbFsr8d
−bFsrdg /2j. These rates satisfy detailed balance and yield
the equilibrium Gibbs distribution,Peqsrd~expf−bFsrdg, as
the steady state solution to Eq.(2). Relaxation processes de-
scribed by these rates implicitly assume that neither energy
nor entropy barriers impede the fluctuations of the order pa-
rameter around its equilibrium value,req=0.

The canonical scenario described above can be altered
dramatically if the microscopic dynamics are constrained in
some way. An example is provided by a system of hard
spheres at densities approaching random close packing. At
these large densities only correlated motions of many spheres
are available to the system in order to relax a density pertur-
bation [5]. We consider the case where such constraints in
the microscopic dynamics can be encoded as an asymmetry
in the way energy and entropy enter the transition rates
Wr→r8. In particular, we assume that energy lowering transi-
tions can proceed only from a small subset of microstates at
given r. If the system finds itself in one of these microstates
the transition occurs at a fixed rate independent of the value
of r. The number of states available for the energy lowering
transitions is taken to be proportional to the number of mi-
crostates in the target state,r8. Thus, the rate of energy low-
ering transitions is proportional to the ratio of the number of
microstates inr8 and r, and is therefore a function of the
entropychange only. Taking the requirement of detailed bal-
ance also into account leads to

Wr→r8 =H e−fSsrd−Ssr8dg if Esr8d , Esrd

e−fbEsr8d−bEsrdg if Esr8d . Esrd.
J s3d

These rates imply a funnel-like topology of the trajectory
space since the number of paths leading downhill in energy
decreases continually as the system approaches its ground
state.

Using the quadratic expressions for the energy and en-
tropy in the transition rates leads to the master equation(for
r.0 [6])

DtPsrd = − se−mr + e−m* sr+DrddPsrd + e−m*rPsr − Drd

+ e−msr+DrdPsr + Drd; s4d

Dr=1 is the microscopic step size in the order parameter
space. Since the rates are invariant underr→−r, the equa-
tion for r,0 has a similar form. Close to the critical point
sm*−m!1d typical values ofr are much greater than one,
and we expect significant variations ofPsrd to occur on
scales much larger thanDr. A well defined continuum-r
limit of the master equation,

]P

]t
=

]

]r
Fere−m* uruP + 2De−m* uru]P

]r
G , s5d

is obtained by takingDr→0, Dt→0, andm*−m→0, while
keepingD=sDrd2/2Dt ande=sm*−mdDr /Dt finite. We note
that a direct consequence of the asymmetric transition rates
is the exponentially decaying factor multiplying both the
drift and the diffusion terms in Eq.(5). The time-invariant
probability distribution obtained from this equation is the
normalized, equilibrium distributionPeqsrd=Îe /4pe−se/4Ddr2

.

Scaling solution at the critical point. For e=0, the

Laplace transformP̃sr ,sd=e0
`Psr ,tde−stdt is

P̃sr,sd =
1

Î8sD
em* uru/2

K1SÎ 2s

Dm* 2em* uru/2D
K0SÎ 2s

Dm*2D
. s6d

The long-time limitst→`d corresponds to thes→0 limit
in Laplace space and Eq.(6) suggests the scaling limits
→0 and uru→` while keepingÎsem* uru/2 fixed. Using the
scaling variablez=em* uru/2/Ît, the scaling form of the solu-
tion to Eq.(5) can be written as

Psr,td =
m*

2 ln Dt
Fszd. s7d

The scaling functionFszd=sm* /2de−z2/2m*2
is determined by

substituting the scaling form, Eq.(7), in Eq. (5) with e=0,
and matching the leading order terms for larget. This solu-
tion immediately gives us the mean square fluctuation ofr
for large t,

kr2stdl =

E
0

`

r2 expF−
em*r

2m*2Dt
Gdr

E
0

`

expF−
em*r

2m*2Dt
Gdr

, ln2s2m*2Dtd. s8d

The fluctuations grow logarithmically with time, in contrast
to the standardÎt scaling expected at a normal critical point.

Scaling solution foreÞ0. Away from the critical point,
the Fokker-Planck equation, Eq.(5), has a normalizable sta-
tionary solution. The equation obtained by substituting
Psr ,td=e−er2/4Dcsr ,td in Eq. (5) allows a scaling solution for
csr ,td in the limit t→`, r→` but keeping the combination
em*r / t fixed. Repeating the same steps as described above for
the e=0 case we compute

Psr,td =

expS− er2/4D −
em* uru

2m*2Dt
D

2E
0

`

dr expS− er2/4D −
em*r

2m*2Dt
D . s9d

In the limit t→`, this solution recovers the equilibrium
distribution. From Eq.(9), it is clear that at a given larget,
there are two length scales inr space: the equilibrium length
scale,Îkr2leq=Î2D /e, and a time-dependent length scale,
rc=s1/m* dlnsm*2Dtd. For r!rc, Psr ,td reduces to the equi-
librium Gaussian distribution while forr@rc the distribution
of r is superexponential(see Fig. 2). At long timesrc be-
comes much larger than the equilibriumr and the system
“knows” that it is in equilibrium. This defines a crossover
time tc,em*Î2D/e obtained by equatingrc with Îkr2leq. Be-
low we also compute the relaxation time from the the mean-
square fluctuation of the order parameter,kr2stdl and show
that it diverges as expf1/eg, which is precisely the VFT law.
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An interesting conclusion that can be drawn about the Lan-
dau model is that its critical dynamics cannot be character-
ized by a single diverging time scale.

We have seen earlier that in thee=0 case, kr2stdl
, ln2std for large t. For eÞ0 this quantity will relax to its
equilibrium valuekr2leq=2D /e. From Eq.(9), we find in the
scaling limit,

kr2stdl =

E
0

`

r2 expS− er2/4D −
em*r

2m*2Dt
Ddr

E
0

`

expS− er2/4D −
em*r

2m*2Dt
Ddr

. s10d

Thus one can write

kr2stdl = −
] lnfZsAdg

]A
, s11d

whereA=e /4D, and the generating functionZsAd is given by

ZsAd =E
0

`

dr expS− Ar2 −
em*r

2m*2Dt
D . s12d

From Eq.(11) we find that for larget and smallA,

kr2stdl < kr2leq−
4D

e2 eDm*2/e1

t
. s13d

Thus, at late times, the mean square fluctuation relaxes to its
equilibrium value in a power laws,1/td fashion. A standard
way to estimate the relaxation timet is to define it as the
time needed for the differencekr2leq−kr2stdl to decay to a
given value of order one. From Eq.(13) we immediately
obtain

t ~
D

e2eDm*2/e, s14d

which diverges in the VFT manner ase→0.
Activated dynamics at a critical point were previously

shown to occur in systems with quenched disorder[7] and it
had been suggested that a similar situation might exist in

nondisordered systems with frustration[8]. The emergence
of a glass state in the latter case could then be associated
with a critical point at which relaxation times would acquire
astronomical values long before any discernible spatial cor-
relations indicative of an ordered state could be established.
The dynamical Landau model presented here provides an
explicit realization of this scenario.

The scaling solution to our model demonstrates that a
seemingly innocuous change in the transition rates leads to
an exponential divergence of time scales at a critical point,
while all its static properties are described by mean-field
Landau theory. The dynamics of the Landau model are char-
acterized by a multitude of time scales and by nonexponen-
tial relaxations even away from the critical point. Namely,
the mean-square fluctuation ofr can be written in terms of
the density of statesVsEd as kr2stdl=e dEVsEde−Et. The
power law decay foreù0, Eq. (13), implies thatVsEd is
proportional todsEd-const with thed function guaranteeing
the equilibrium value. At the critical point, the logarithmic
decay of the fluctuations impliesVsEd~ ln2sEd /E. The glass
transition in our model is, therefore, not characterized by a
vanishing gap in the energy spectrum[of Eq. (5)] but instead
by an accumulation of states nearE=0. This then translates
to a distribution of time scales with increasing weight in the
tails of the distribution corresponding to long times.

In the Landau model with a quadratic entropy function the
entropy goes to zero atrmax

2 =2S0/m* and our analysis is,
therefore, strictly valid forkr2leqørmax

2 or eùm* /2S0. For
smaller values ofe the relaxation time-scale divergence is
cut off by the system size.

Microscopic models. The transition rates given by Eq.(3),
which formed the basis of our dynamical equation and led to
the VFT divergence of time scales, are explicitly realized in
the interacting three-color model[9]. The configurations of
the three-color model on the honeycomb lattice can be
mapped on to loop packings and the loops can be identified
with equal height contours of a discrete height field which
lives on the dual triangular lattice[10]. Coloring configura-
tions can be organized into topologically distinct sectors
characterized by the number of nonzero winding number
loops, which correspond to different global tilts in the height
representation. The introduction of a long-range interaction
between one of the colors leads to a phase transition from a
flat to a completely tilted state[9] with the tilt playing the
role of the order parameterr.

Microscopic dynamics for the three-color model can be
defined in terms of loop updates[9] with transitions between
different loop configurations satisfying detailed balance.
Simulations were performed to extract the transition rates
between different tilt states and it was shown that they take
the form described by Eq.(3). The asymmetry in the rates
owes its origin to the loop dynamics. Ar-reducing(energy-
increasing) transition involves deleting an existing nonzero
winding number loop. The rate of this transition is deter-
mined only by the change inenergysince all loop configu-
rations at a givenr can lead to a configuration withr8,r.
On the other hand, a transition that increasesr and conse-
quently decreases the energy, involves introducing a new
nonzero winding number loop. Since only a small subset of

FIG. 2. The probability distribution,Psr ,td, for three different
times, with e=0.1, D=1, and m* =1. For these parameters,rc

=0.69, 2.3, 4.6 fort=2, 10, 100, respectively, andtc=88. Note that
at t=2 the distribution is essentially superexponential and fort
=100 it is a Gaussian.
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loop configurations at a givenr can accommodate a new
nonzero winding number loop, this transition rate depends
only on the change of entropy. We believe similar mecha-
nisms are operative in other systems where transitions be-
tween macrostates involve large scale rearrangements that,
due to the presence of constraints, can occur only through
coordination of many microscopically rearranging regions.

In this paper, we identify a concrete physical mechanism
by which dynamical barriers are established in the free en-
ergy landscape. The dynamics in the order parameter space
in our model is thus reminiscent of diffusion on hierarchical
lattices[11,12] and trap models[13]. Recently, attempts have
been made to identify inherent structures in supercooled liq-
uids as providing a microscopic basis for traps[14,15]. If we
identify inherent structures with the order parameterr in our
model then the predicted distribution of trapping times,tr

=1/sWr→r−1+Wr→r+1d, is log-normal with a width that in-
creases as 1/e. This is consistent with the behavior observed
in supercooled liquid simulations[14].

Studies of kinetically constrained models[16] have iden-
tified dynamical heterogeneities[17,18] resulting from the
kinetic constraints and an entropy crisis in trajectory space
which leads to rapidly increasing time scales[18,19]. In our

model, the asymmetry of the rates results in an entropy crisis
and, combined with the existence of an equilibrium critical
point, leads to an exponential divergence of relaxation time
scales for a finite value of the control parameter.

The coarse-grained dynamical model presented here sug-
gests a new way of analyzing atomistic simulations of glassy
materials. From molecular dynamics simulations one can
measure the transition rates between macrostates character-
ized by different values of a slow variable that plays the role
of an order parameter, e.g., the metabasin energies in super-
cooled liquids[14,15]. This approach avoids making specific
assumptions about the origin of the transition rates. Dynam-
ics in order parameter space can be constructed explicitly
and analyzed for the types of asymmetries and related dy-
namical barriers discussed here within a simple Landau
model. Work along these lines is currently in progress.
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